I M.Tech - II Semester – Regular Examinations - JULY - 2023

ADVANCED ELECTROMAGNETIC FIELDS (MICROWAVE & COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 60

Note: 1. This paper contains 4 questions from 4 units of Syllabus. Each unit carries 15 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks				
	UNIT-I								
1	a)	In detail, explain the A-C Characteristics of	L4	CO1	7 M				
		matter.							
	b)	Describe the relationship of complex	L4	CO1	8 M				
		terminal current to complex terminal							
		voltage.							
	OR								
2	a)	What are Maxwell's equations? Write the	L3	CO1	8 M				
		Maxwell's equations in integral form &							
		point form and describe it.							
	b)	Explain and derive the expression for	L4	CO1	7 M				
		energy stored in Magnetic field.							
UNIT-II									
3	a)	Describe the following terms with relevant	L3	CO2	8 M				
		illustrations and necessary equations:							
		(i) Standing Wave Ratio							

		(ii) Q-factor					
		(iii) Dominant mode					
		(iv) Radiation resistance.					
	b)	What is Polarization? With relevant figures,	L3	CO2	7 M		
		explain the types of polarization.					
OR							
4	a)	Derive the wave equations in lossy matter.	L3	CO2	7 M		
	b)	Derive the field components of TE-Mode in	L3	CO2	8 M		
		Rectangular Waveguide.					
	UNIT-III						
5	a)	What do you mean by Green's function?	L3	CO3	8 M		
		Derive its necessary equations and write					
		down the properties of Green's Function.					
	b)	State and prove reciprocity theorem.	L3	CO3	7 M		
		OR					
6	a)	In detail, explain duality theorem with	L4	CO3	7 M		
		relevant examples.					
	b)	State and explain Uniqueness Theorem.	L3	CO3	8 M		
		Justify how uniqueness theorem satisfies the					
		criterion of Laplace's equation and potential					
		on the boundaries.					
	T	UNIT-IV	r	1 1			
7	a)	What is Uniform Plane Wave? Derive all	L3	CO4	8 M		
		the necessary relations in an Uniform Plane					
		Wave and prove $E/H=120\pi$					
	b)	Analyze wave functions using separation of	L4	CO4	7 M		
		variables method.					

OR								
8	a)	In detail, Analyze the Rectangular Cavity.	L4	CO4	7 M			
	b)	Obtain the Boundary Conditions for	L4	CO4	8 M			
		TM&TE w.r.t Rectangular waveguide.						